CALIFORNIA HIGH-SPEED TRAIN SYSTEM

- Provide a new mode of highspeed intercity travel to link major metropolitan areas
- Forecasted to carry as many as 100 million passengers annually by the year 2035
- 800-mile system with stations built to allow for express service
- Service linking the San Francisco Bay Area, Central Valley and Southern California
- 100% clean electric power
- Estimated travel time from San Francisco to Los Angeles: less than 2 hours 40 minutes

DESIGN OBJECTIVES AND EVALUATION CRITERIA

OBJECTIVE

- Maximize ridership & revenue potential
- Maximize accessibility
- Minimize operating and capital costs

CRITERIA

- Minimize travel time
- Intermodal connections
- Minimize route length

EVALUATION MEASURES

- Minimize disruption to neighborhoods and communities
- Minimize impacts to environmental resources
- Minimize impacts to natural resources
- Land use
- Construction feasibility

THE STARTING POINT

Initial infrastructure construction will begin in the Central Valley, the backbone of the system:

- Construction starting in second half of 2012, investing \$5.5 billion into the economy
- Potential to create nearly 100,000 jobs
- More than 120 miles from north of Fresno near Madera to Bakersfield – a choice that:
 - Meets state and federal requirements
 - Gives the greatest flexibility to build both north and south as funding becomes available
 - Constitutes the backbone of a system that will reach across the whole state

PROJECT ENVIRONMENTAL REVIEW SCHEDULE AND ALTERNATIVES ANALYSIS PROCESS

MORGAN HILL-GILROY SUBSECTION

PACHECO PASS SUBSECTION

SAN JOSE-MERCED SIMULATIONS

Downtown Gilroy (6th St.)

Monterey Rd.

Los Banos Wildlife Area at Henry Miller Rd.

TYPICAL SECTIONS ALONG ALIGNMENT

Shared Railroad Corridor

Portions of the alignment will need special structures to fit into the built environment

Structures could include:

- Aerial structures
- At-grade
- Trenches

Aerial Structure

Shared Highway Corridor

Trench Section

GRADE SEPARATIONS

Before

Typical Underpass

After

- Grade separations are underpasses and overpasses where roadways cross railroad tracks
- Grade separations reduce congestion and noise and improve safety
- California High-Speed Train tracks will be gradeseparated from adjacent roadways

Typical Overpass

Grade Separated from Roadway

MITIGATION MEASURES UNDER ELEVATED GUIDEWAY

Agricultural Use Under Guideway

- FRA has approved joint use under HST Guideway
- Linear parks, paths and roadways may be considered

Joint Use in Italy

SOUND

Rolling – sound from the wheels as trains move along the tracks.

Propulsion – sound from motors and gears that make the train move.

Equipment – sound from cooling fans and air conditioners.

Aerodynamics – sound from the flow of air moving past the train at high speed.

The review will look at two key measurements:

One-Hour Equivalent Sound Level, which measures the moment-to-moment fluctuations in sound over a single hour – taking into account both the number of trains and the time they take to pass by – the best measure for assessing the impacts on offices, schools and libraries.

Day-Night Sound Level looks at sound fluctuations over a full 24 hours, taking into account the heightened sensitivity in residential areas to sounds made late at night.

SOUND

How does high-speed rail compare to other everyday noises?

A train moving at 220 mph – the top speed of California's high-speed trains – will be heard for about four seconds

By comparison...
A 50-car freight train traveling at 30 mph can be heard for one minute

WHY WE NEED HIGH-SPEED RAIL

JOBS

- 600,000 full-time, one-year, construction-related job-equivalents
- 5,000 permanent operations and maintenance jobs
- 450,000 economy-wide jobs by
 2035

MOBILITY

• "Economic power is how fast you move people and goods around the state."

Gov. Arnold Schwarzenegger, January 15, 2008

ENVIRONMENT

- Reduced greenhouse gases
- AB 32: California's 2006 landmark legislation to reduce greenhouse gas emissions 25% by 2020
- Population Growth
- California's population now: 38 million

By 2035: 50 million

WHY WE NEED HIGH-SPEED RAIL

We can build...

 New freeways, airport runways and more departure gates to address our expected population growth

or

We can achieve...

 An 800-mile high-speed train system, powered by 100% renewable electricity generated by clean wind and solar energy

HOW TO PARTICIPATE

- Talk to high-speed train staff
- Fill in and drop off comment cards
- Add your e-mail to our mailing list

For more information after this meeting:

Call: (800) 881-5799

Visit: www.cahighspeedrail.ca.gov

E-mail: san.jose_merced@hsr.ca.gov

